Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: What we can learn from video compression techniques

نویسندگان

  • Hong Jung
  • Jong Chul Ye
چکیده

Compressed sensing has become an extensive research area in MR community because of the opportunity for unprecedented high spatio-temporal resolution reconstruction. Because dynamic magnetic resonance imaging (MRI) usually has huge redundancy along temporal direction, compressed sensing theory can be effectively used for this application. Historically, exploiting the temporal redundancy has been the main research topics in video compression technique. This article compares the similarity and differences of compressed sensing dynamic MRI and video compression and discusses what MR can learn from the history of video compression research. In particular, we demonstrate that the motion estimation and compensation in video compression technique can be also a powerful tool to reduce the sampling requirement in dynamic MRI. Theoretical derivation and experimental results are presented to support our view. VC 2010 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 20, 81–98, 2010; Published online in Wiley InterScience (www. interscience.wiley.com). DOI 10.1002/ima.20231

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Reducing View-sharing artifacts in dynamic Contrast-Enhanced Magnetic Resonance Angiography using Compressed Sensing

Target Audience: Clinicians and researchers working with dynamic Contrast Enhanced MRA (CE-MRA). Purpose: Dynamic Magnetic Resonance Angiography (MRA) has become a widely accepted tool for clinical evaluation of complex vascular hemodynamics. To allow for high spatial and temporal resolution, view-sharing techniques 1,2 are commonly used whereby the k-space center is updated more frequently tha...

متن کامل

Motion Compensated Dynamic MRI Reconstruction with Local Affine Optical Flow Estimation

This paper proposes a novel framework to reconstruct the dynamic magnetic resonance images (DMRI) with motion compensation (MC). Due to the inherent motion effects during DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been studied under a compressed sensing (CS) scheme. In this paper, by embedding the intensity-based optical flow (OF) constraint into t...

متن کامل

Three-Dimensional Compressed Sensing for Dynamic MRI

Introduction: Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is a valuable tool used in a number of clinical applications. However, imaging of time-varying objects is a challenging task when both high spatial resolution and high temporal resolution is desired. It has been demonstrated that radial imaging techniques can yield increased temporal resolution without sacrificing sp...

متن کامل

Motion estimated and compensated compressive sensing dynamic MRI under field inhomogeneity

Introduction: Recently, we proposed a compressed sensing dynamic MR technique called k-t FOCUSS that extends the conventional k-t BLAST/SNESE by exploiting the sparsity of x-f signal. Especially, we found that when a fully sampled reference frame is available more sophisticated prediction methods such as RIGR and motion estimation and compensation (ME/MC) can significantly sparsify the residual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Imaging Systems and Technology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010